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The rheology of dilute suspensions of slender rods 
in weak flows 
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(Received 26 March 1986 and in revised form 26 November 1986) 

This paper describes the consequences of pair interactions in dilute suspensions of 
rigid rods of length 21 and radius a subjected to weak, steady shear flows. The 
combination of hydrodynamic and Brownian forces increases alignment with the 
flow, thereby enhancing the shear thinning and strain thickening expected from 
dilute theories. The theory is asymptotic in Pe 4 1 and E = (ln21/a)-l4 1 but 
requires an ad ?wc approximation to simplify the form of the hydrodynamic 
interactions and the rod-rod excluded volume. The theoretical predictions of the 
Huggins coefficient in simple shear flow are compared with data in the literature 
for Xanthan gum, a semi-rigid biopolymer. Comparison with semi-dilute theories 
emphasizes the fundamentally different nature of the interactions in the two regimes 
and indicates that the transition between the two lies in the range 1.5 < [qI0 n < 6. 

1. Introduction 
Existing analyses of the rheology of suspensions of slender rods, whether repre- 

senting colloidal particles or rigid macromolecules, concentrate on either infinite 
dilution (e.g. Hinch & Leal 1972; Brenner 1974) or semi-dilute concentrations (Doi 
& Edwards 1978a, b;  Jain & Cohen 1981). The former completely neglect interactions 
and, therefore, require ds Q 1 (n = number density, 21 = length). The latter assume 
1 4 nls 4 (Z/a)* (a = radius of rod) and account for interactions via a physically 
compelling but, nonetheless, ad hm representation of the hindered diffusion process. 
Here we examine in detail pair interactions between rods suspended in a Newtonian 
fluid to determine the O(da)* contribution to the bulk stress in the dilute limit and 
to provide some perspective for assessing interactions in the transition between the 
dilute and semi-dilute regimes. 

The motivation for studying moderately concentrated suspensions of rods comes 
from the behaviour of water-soluble polymers used as thickeners in coatings and for 
mobility control in enhanced oil-recovery operations, and the importance of rigid 
polymers in the fabrication of high-modulus fibres (Chu et a1. 1981). Low-molecular- 
weight carboxymethyl cellulose, for example, becomes a fully extended rod at ionic 
strengths below lo-' M (Moan & Wolf€ 1974). Xanthan gum, on the other hand, is 
not completely rigid (Holzwarth 1978) but sufficiently stiff to behave in dilute 
solution much like a rigid rod even at high ionic strengths (Whitcomb & Macosko 
1978). The rigidity aa well aa the presence of fixed charges along the backbone of such 
macromolecules amplify both the importance of interactions at moderate concen- 
trations (n13 = O( 1)) and their dependence on the solution chemistry. Hence, as with 
colloidal suspensions (Russel 1980), pair interactions should provide a physical basis 
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f w  understanding more concentrated solutions where interactions dominate both the 
thermodynaqics and the rheology . 

Construction of a pair-interaction theory for rods requires expressions for (i) the 
hydrodynamic and thermodynamic interactions, (ii) the microstructure as charac- 
terized by the orientation distribution function and (iii) the resulting bulk stress. 
Our analysis ($2) employs slender-body theory (Batchelor 19706) to  describe the 
hydrodynamics of rods. The interactions are weak but long ranged, so we construct 
a regular perturbation expansion in E = [In (21/a)]-l + 1 ,  retaining only the O ( E )  term. 
To obtain tractable expressions these are simplified to  the far-field form. Then the 
velocities and induced dipole for one rod can be written in terms of the undisturbed 
velocity field plus the diaturbance generated by a second rod. The equation governing 
the arient>ation distribution function is derived in $ 3 from the N-particle conservation 
equation by integrating over the configurations of N -  1 particles in the manner of 
Hinch (1977) and Rallison & Hinch (1986). The long-range hydrodynamic interaction 
produces a nop-convergent integral which we renormalize as suggested by Batchelor 
(Batchelor & Green 1972; Batchelor 1977). The effect of the second rod on the first 
theq regembles an enhanced rate of strain, expressed as an integral over the surface 
of the rod-rod excluded volume. A solution valid for weak flows is obtained as a 
regular perturbation expqnsion in the PQclet number, Pe + 1 ,  carried out to O(Pe3) 
$0 capture $he normal stresses, shear thinning, and strain thickening arising from 
alignment of the rod in the direction of flow. 

Explicit evaluation of the orientation distribution function requires, however, 
dealing with the complex geometry of the excluded volume. Here ($4) we resort to 
pre-averaging this volume over the orientations of both rods, a second ad hoc 
approximation similar to  taking the far-field limit for the hydrodynamic interactions. 
The result is a slightly deformed sphere with a shape dependent on the P6clet 
number. Thus the theory is asymptotic in q5 + 1 ,  E + 1 and Pe G 1 but contains an 
O( 1 )  error due to  the far-field and pre-averaging approximations. 

Sectiqns 5 aqd 6 contain the derivation and evaluation of the bulk stress, including 
bQth Brownian and hydrodynamic contributions. The long-range hydrodynamic 
interaction again produces a non-convergent integral which is renormalized by the 
staqdard technique (Batchelor & Green 1972). Explicit results for the bulk stress 
to second order in the Phclet number are given for both simple shear and extensional 
flows. 

The final two sections compare the theoretical results with experimental data on 
the viscosity of dilute solutions of Xanthan gum (Chauvateau 1982) and with 
predictions from hindered-diffusion theories for semi-dilute concentrations (Doi & 
Edwards 1978a, 6) .  The dilute theory matches the experimental data a t  zero shear, 
but is only qualitatively similar at higher shear. Comparison with the hindered- 
diffusion theory at zero shear reveals a transition between the two for 
6 < @ ~ P E  < 24. 

2. Dynamics of interacting rods 
The motion of a slender rigid rod of radius a and length 21 9 a suspended in a fluid 

of viscosity p is described quite conveniently by slender-body theory (Batchelor 
1970b). Here we consider only terms of leading order in 
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which are independent of the exact geometry, i.e. the variation of radius with axial 
position. All quantities will be dimensionless, scaled on the following : 

length 1, 

velocity Z(€:€)+, 

force 

where E is the macroscopic rate-of-strain tensor. The Pdclet number 

8z,uks(E: E)i 
3kT 

P e  = 

will gauge the importance of shear relative to rotary Brownian motion. 

fluid to be represented by a superposition of fundamental solutions, 
The linearity of the Stokes equations permits the velocity u at position x in the 

U ( X )  = I ( , (X)++ f l s ) * / ( ~ - ~ ’ ) d s  J‘I, 
z u,(x) +u’(x). (1) 

Here u,(x) is the velocity in the absence of the rod and u’(x) is the disturbance due 
to a rod with orientation q centred at x,(x’ = x, + sq) expressed in terms of the Oseen 

(2) 
tensor S rr 

r 1.9’ 
where 6 is the isotropic tensor. The force per unit lengthfls) is unknown. The force 
and torque acting on the rod and the dipole induced in the rod by the flow are 
respectively related tons )  by 

/ (r)  = -+- 

The no-slip boundary condition at the surface of the rod requires that 

u = u+sg, (4) 

where Uand g are the translational and rotational velocities of the rod, respectively. 
The integral equation resulting from (1) and (4) determinesfls), but the quantities 

of interest, 4 and S, can be found to first order in s without an explicit solution. 
Instead, multiplication by (I x ( q  x ) and integration of the entire integral equation 
over the length of the rod produces 

Through similar manipulations 
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FIGURE 1.  Geometry of pair interaction with hard-rod excluded volume. 

For two interacting rods (1) represents the fluid velocity exactly if forces are 
distributed along both axes and the boundary conditions (4) are applied on both 
surfaces. The interactions remain weak, however, unless the rods approach to within 
a few diameters at some point along their axes, an unlikely prospect when nF Q l/a. 
Hence at dilute concentrations the effect on the velocities and the induced dipole is 
O(E)  smaller than the corresponding values for the isolated rod and can be calculated 
directly from (1) by using the disturbance velocity due to the second rod (as if 
isolated) in place of uo. The exact result, correct to first order in E for separations of 
0(1), is a complex function of the orientations, q1 and q2, and the relative position 
R (Berry 1982). Below we seek only the simpler far-field form. 

Figure 1 illustrates the geometry of the interaction with r = g1q1+R-s2q, 
representing the vector between two arbitrary points on the rod axes. The rotational 
velocity of rod 1 in the presence of 2 is 

with ql0 referring to an isolated rod and u; given by the integral in (1). In the far 
field 

so that 

u; = u p )  +~l~l'Vu;(R)+~s~qlql:vVu;(R) 

41 = 010 + 41'Vu;(R)* (8 - 41 41). 

Similarly, s12 = ~lo+bl4141'e2(R)'41 

(8) 

= s,, + SI2, (9) 

with 8, = !j(Vui+ (VU;)~)  and S,, the dipole for an isolated rod. The fact that the 
effect of the interaction is O(E)  smaller than the corresponding term for the isolated 
rod is evident from the scaling off. 
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In the following sections we assimilate these results for the dynamics into a 
conservation equation for the suspension microstructure and an expression for the 
bulk stress which recognize far-field interactions among the rods. 

3. Pre-averaged pair conservation equation 
The probability density PN of a configuration of N rods in a volume 77 is defined 

by the N generalized configuration space vectors vt describing their positions and 
orientations. The resulting conservation equation, 

(10) -+ZV,'btPN W N  = 0, 
at 1 

balances accumulation at  a point in configuration space with generalized convection 
into the point. Denoting CN = (vl,.  .. , vN) allows the normalizations for the 
probability density to be written as 

I PN dCN = N!, 

etc. 

I PNdCN-, = (N-l)!  PI I 
Since interactions are O(s), the one- and two-particle probabilities can be expanded 

with f(q)dq the probability that an individual rod has orientation between q and 
q + dq. Note that this expression for P, applies only for the accessible configurations ; 
the probability density is zero for configurations that cause the rods to overlap. 
An equation for & orf, including the effects of pair interactions, can be derived 

by integrating the conservation equation (10) with respect to dCN-,, i.e. over all 
configurational vectors but that describing rod 1. For i + 1 

with A the surface enclosing V, since rods are conserved within the volume. This 
leaves 

with V,,, referring to the volume accessible to the rods. The integral in (14) can be 
decomposed info two terms representing the effect of the macroscopically imposed 
flow and the velocity disturbance u; p r o d u d  by the presence of rodj. Then at steady 
state (14) reduces to 

(15) 
8 Z v q ~ ~ ~ v ~ ~ ~ ~ ~ p N d c N - l ~ ~ ~ l ~ ~ ~ l ~ l ~ l ~ ~  

Vq1.41& = -- w- 1 )  ! ,*1 

Unfortunately, VU; decays as IFa, making the integral in (15) conditionally 
convergent if evaluated directly. Hence, a renormalization akin to that developed 
by Batchelor & Green (1972) or Hinch (1977) for the bulk stress in a suspension of 
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spheres is necessary, Since the macroscopic velocity gradient is imposed on the 
suspension, the perturbations must integrate to zero as 

where V includes both Vexel, the volume excluded to one rod by the presence of a 
second, and V,,,. Subtraction of a suitable multiple of (16) from (15) renders the 
integral convergent. 

Since the other N -  1 rods are indistinguishable, the renormalized ensemble average 
can be rewritten as 

€ v 41 .q 10 p 1 =-- (N-2)!vq1'{Jvacc VrlD ~; (pN-Pp, - i  nf(qi)) dCN-1 

-[ Vexcl v r l ~ ~ ; ~ ~ - l ~ ~ ( ~ l ) d ~ ~ - l } ~ ( q 1 6 - q 1 4 1 4 1 ) .  (17) 

Substitution of (11) and (12) into (17) demonstrates that PN = nfP,-,(l +O(s)), so 
the first integral is zero to order 8. 

Applying (12) and the divergence theorem then allows the conservation equation 
to be rewritten as 

with 

vql 41&1) = o(€n2n 
41 = 4 1 0 - ! n ~ ~ 3 { ~ . q 1  +a:(% 6 - Q1 4141)) 

(18) 

and 

Here Aexcl refers to the surface of the excluded volume about rod 1 and n is the 
unit normal to that surface. 

The rotational velocity 4,, includes the effect of the macroscopically applied flow 
field plus the motion arising from the Brownian torque, 

(20) 
produced by gradients in f. The linearity of the Stokes equation permits superposition 
of these effects as 

(21) 

Substitution into (18) demonstrates that the hydrodynamic and Brownian dipoles 
produced by rod 2 create an augmented rate of strain (E-$enl%3) and an augmented 
vorticity (SL - $ d 3 G ) .  

For far-field interactions, u; and e, produced by rod 2 follow from ( l ) ,  (6) and (9) 

TBr = - Pe-' VqI lnf(ql), 

010 = ~ ~ 4 1 + ~ : ~ ~ 1 ~ - 4 1 4 1 4 , ~ - ~ ~ - '  vql lnf(41). 

with 

and 

The symmetric hydrodynamic dipole Sktd generates no vorticity to accompany e,, 
but the Brownian dipole Sg does. 

S:Zd = b z  E. 42 9 2  42 

SE = &2 vq2 lnf(q2). 
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The conservation equation (18) describing the rod orientation probability f 
contains the pre-averaged values, i5 and W, obtained by integration over the 
orientation q2. Use of the identity 

(23) V,(fq) = W,f) 4 +f(b - 44) 

and Green's theorem for a closed spherical surface, 

J q f 4 )  d24 = 2 J4ddL ,  

demonstrates that e: is symmetric so that 
0 = 0. 

Calculation of B requires the rod orientation function and the excluded-volume shape 

The conservation equation (18) is linear in f but contains coefficients that depend 
on all seven independent variables. Here we develop solutions via a double pertur- 
bation expansion with the first expansion in E 4 1 as 

- 

(94). 

f = (f (0 )  - $umz3f (1) + . . . ) ( 1 + O(E) ). 

Substitution into the steady-state conservation equation then decouples the O( 1) 
component 

V:J(0)(q1) = Pe Vql ((8 + €1 q1 - 41 . E* 41 4Jf "'(41) 

from the O(E) 

(24) 

V&f (%?I)  = ~ ~ ~ ~ q ~ ~ ~ ~ ~ ~ 4 , + ~ ~ 4 1 - 4 1 ~ ~ ~ 4 1 4 1 ~ f ~ ' ~ ~ 4 1 ~ ~  

with 

and 

The second expansion for Pe << 1 

1 
f (o )  = 4n ( 1 + Pef 10) + Pe2jk0) + Pe3 f i0) + . . . ), 

f(1) = -( ~efI ' )+PeZfP)+Pe ' f~ ' )+  ...) 
1 

4% 

then provides a hierarchy of equations for the f lo) and ti'). The results for isolated 
rods, summarized by Brenner (1974), are 

f F' = hl.E.41, 

fro) = !jfio)2-& tr(P)-&ql*J(E)*ql, 

t p )  = ~ F W )  - 4~ + i i t i o ) q l  * J R  q1 -al *JW q1 + M~ 0 ~ 2 ~ )  q1 -A tr (PI. J 
(27) 

(28) i Here Dn = D.D*..:D(n times), 
tr  (0) = S:D, 
J(D) = D*SZ-SZ*D, 

the last being the steady-state form of the Jaurnann derivative. 
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The second moment of the distribution function 

(29) 

reflects the effect of flow on the orientation (Brenner 1974). For a simple shear flow 
with El, = E,, = Q,, = = 1 / 4 2  the projection of the rod on the axis in the 
direction of flow is 

(30) 

Hence the shear tends to align the rod. 

into (25) with 
The hierarchy of equations forfl') now follow from substitution of (26) and (27) 

- e = @hYd + P e - l P r  

= a0+ Pea, + Pe2@,+. . . (31) 

(Berry 1982). In  each V2 operates onfl'), representing the effort of rotary diffusion 
to randomize the distrigution, while the forcing terms arise from the strain fields 
i3t-l acting on the isolated rods with fPl(q1) and the applied field €+ 51 acting on 
the lower-order fj'). Solution of these inhomogeneous equations produces 

- kE41 *J (@o)  '41 -kZo 41 J(E)*41- kl*J(E.@O) '41 

+ &1*Je(@O) 41 + -&€:Ti, --+?l'J(@1)'41+ @ 2 9  

- where E = q;E*q,, e, = q1*i3t*q1. 

Explicit evaluation of these solutions requires substitution of the flo) and inte- 
gration. The hydrodynamic contribution to the rate of strain contains the fourth 
moment of q2 which can be reduced to second moments by multiplying the 
conservation equation for the isolated rod (25) by q2 qn d2q2 and integrating (Brenner 
& Condiff 1974). The Crownian terms that contain the gradient of f ( O )  are reduced 
to second moments through (23). The result is 

- 3  e=-J {[@+ 511.42 42 + 42 42' (E- 51) -$Q2 4 2  51 
n n  "It Aexcl 

+ ~ P e - ' ( 4 2 4 2 - ~ S ) ~ : ~ ( ~ o ~ + ~ ~ o ) f 0 ( 4 2 )  R d2Rdq2 (33) 

with no = R/R. 
To this point the analysis depends only on the asymptotic approximations for small 

e, 4 and Pe and the far-field form for u;. The next section derives the unit normal 
n to the surface enclosing the excluded volume required for the evaluation of 8. 

4. Evaluation of the rate-of-strain disturbance for interacting rods 
For hard, i.e. impenetrable, rods the excluded volume depends on the rod 

orientations as shown in figure 1. This rectangular parallelepiped, with volume 
1 6 d 2  sina, forms a difficult, non-conformal geometry for evaluating e from (19). In 
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order to proceed analytically, we approximate the parallelepiped by an ellipsoid with 
equal volume and axis ratios. Then we define a pre-averaged excluded volume by 
averaging the moment of inertia of this ellipsoid over all orientations as 

(0 = J’/kl 42)f (O’(41)f ( O ’ ( 4 2 )  d41 dqz. (34) 

With no imposed flow, the pre-averaged excluded volume reduces to a sphere. Weak 
flow fields (Pe 4 1) deform the sphere slightly into an ellipsoid. This representation 
of the excluded volume, while ad h c ,  is straightforward and should introduce no 
greater error than our far-field approximations for interactions. 

The ellipsoid approximating the parallelepiped in figure 1 has basis vectors 

and 

I 41+42 
eb = [2( 1 + t ) ]4’  

I 41-42 

ec = [2olf’ 

e , = - - j p  41 x 42 

(35) 

where 8 = lql x q21 = sina and t = q1*q2 = cosa. The semiaxis lengths b, c and d are 
found by equating the volumes, 

4x - bcd = 16aZ8S, 
3 

and the axis ratios 

a’ a 4 2  
b - m’ -- 

of the parallelepiped and equivalent ellipsoid. The result is 

I b = 1.3931(1 +t ) f ,  

c = 1.3934 1 - t)i ,  

d = 1.97Oa. 

The moment of inertia for this ellipsoid is 

(37) / = -bcd[(c2+dz)ebe,+(bz+d8)ecec+(bZ+c2)eded].  

To pre-average we substitutef(0) from (26) andlfrom (37) into (34), and then evaluate 
the integral by expressing qz in terms of a system of basis vectors containing q1 (see 
the Appendix) and using the orthogonality relationships (i.e. Jqqd2q = gx6, etc.). 
This ultimately produces 

{I) = 7.414- aZ4 6 -&Pe E +- [ - 3 0 P  - 4EB :66 + 49J(€)]> (38) 

for a linear shear flow. In  the absence of flow, the suspension is isotropic and (38) 
reduces to 

corresponding to a sphere of radius ro = 1.312(aZ4)i. With flow the anisotropy of / 
reflects the structure induced in the suspension. 

4x 
15 

Pez 
4xz 45 { 3360 

(0 = 6.504aZ46, (39) 



484 D.  H .  Berry and W. B. Russel 

To determine the unit normal n we write the general equation for an ellipsoid as 

1 = r2no-A*no (40) 

where r ,  the distance from the centre of the ellipsoid to a point on the surface, is scaled 
on the characteristic length ro and no = r / r .  Since the excluded volume differs only 
slightly from a sphere A and r can be expanded as 

A = 6+PeAl+Pe2A2+ . . . , I  
(41) 

r2 = 1+Pea,+Pe2a2+ ..., 

which produces a, = -n;A;n,, 

a2 = -nO~A;n,+(nO~A;nO)~. 

= (VF.VF)t 

The normal then is found from 
VF 

with F =  r-[i+Peal+Pe2a2+ ...I t = O  

so that 

n = no + Pe[A, no - no* A, *no no] + +Pe2[ (2A2 - 2n0.A, *no A,) *no 

- ( 2 ~ , * A 2 ~ ~ o - 3 ( ~ o ~ A , ~ ~ o ) 2 + ~ o * A ~ * ~ , ) ~ o ~ .  (43) 

Similarly, expanding the moment of inertia, scaled on ri, as 

= lo +Pel, + P e 2 I 2  + . . . (4.4) 

with d a =  

and substituting (41) and (43) yields 

8~ 
15 ' 

l 0 = - 6  I 

Matching with (38) then produces 

O(Pe) A, = -&€ 

O(Pee) A, = &[4290P + 1531P:M + 98W(€)]. 
(46) 

Finally the unit normal takes the form 

{[858P + 196W(€) -2058n;E~n0E]~nO 
7Pe 
40 67 000 

n = n - - (€*no-no*€-nono)--  

- [ 1887n0 E2.n0 + 1960n0 *J(€) *no - 3087(n0 '€, n)'] no}. (47) 
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The expression for 8, expanded for small Pe in (31), can now be evaluated using 
the results for jq2q2f(0)q2 found in Brenner (1974). Substitution of (4.7) into (3.3) 
and integration over R produces 

e, = &€ - 

8, = &[87E2 - 29Ea :66 - 105J(E)] ] (48) 
- 
8 2  = -[ 14 19OP-4730P :b6- 13 453P :SE- 30 765J(P) + 2 9 4 W ( € ) ] .  

Note that the particle feels the enhanced rate of strain $xZSen&E even though the 
excluded volume is 16xaZ2n. This occurs because the rate of strain near an isolated 
rod is O(l /a) .  

These indicate that for a simple shear flow interactions affect the rod orientation 
at O(Pe2) as 

increasing the alignment in the direction of shear beyond that found at infinite 
dilution (30) due to the enhanced rate of strain in the fluid. With these results we 
can now proceed to evaluate the stresses. 

5. The bulk stress for interacting rods 
In a suspension of interacting rods a variety of processes contribute to the bulk 

stress. The first important distinction is between mechanical and thermodynamical, 
or direct Brownian, stresses. The latter arise from the increase in free energy due to 
the non-equilibrium state of the suspension, as reflected by the apparent thermo- 
dynamic torques cited in 53. The former include both hydrodynamic and indirect 
Brownian components, with the hydrodynamic deriving from the inability of the rod 
to deform with the fluid and the Brownian from the viscous stresses induced by 
particle rotations under the influence of the thermodynamic torques. Below we 
develop the bulk stress based on earlier work for isolated rods (Giesekus 1962) and 
interacting spheres (Batchelor & Green 1972; Batchelor 1977) but include the effect 
of interaction on the rod orientation. 

5.1. Hydrodynamic and Brownian contributions 
The general expression for the hydrodynamic contribution to the bulk stress is 
(Batchelor 1970a) 

(49) 
8xe E =-pb+2E+- x S:Yd 
3V g-, 

with SFyd representing the dipole induced in the ith rod by the local rate of strain. 
For pair interactions 

where Si, is calculated from (9) and (22) with SFzd replaced by S;j'd+Pe-lSg. 
Conversion of the sums above to  ensemble averages produces with (12) and (24) 
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The first term comprises the single-particle contribution ; interactions affect the 
stress at O(nP)2 both by altering the orientation distribution function f and by 
inducing an additional dipole S’. Since b decays as R-3, the latter term has been 
renormalized with (16). 

The Brownian stress 7 follows from (Giesekus 1962) 

3 
-7 = n13Pe-’ SqVJdq 
8 X E  

and the expansion in (24). Combining the hydrodynamic and Brownian terms yields 
the complete bulk stress as 

c+T = - p b + 2 ~ + ~ n n 1 3 {  J ( ~ ? ; d f ( o ) + ~ e - l q ,  VJ(O)) 

5.2. General results for Pe $ 1 
Determination of the bulk stress requires evaluation of the second moment of ql.  
Bremer (1974) provides the O(1) expression, while the O(E)  term is 

Pe- Pe2 I 630 
q, q, f ( I )  dq, = 15 8, +- [6(E*i!t0 +so* E)  -4(€S0) 6- 7J(s0) + 42s1] 

{20(E* €*ao + 8, € 0  E -I- €*ao E )  - 32( E :ao) E - 16(€: E )  i!to 
Pe3 +- 

18900 

- 20(P:  a0) 8 - 45[J(E*S0) + J(Bo *E)]  + 35Ja(B0) + 1 80(E*el + Sl E)  

- 120(€:8,) b - 21W(B1) + 1260S2 + 630S2 : SS}. (54) 

The final results, with isotropic terms suppressed, follow as 

with 

2 2  16nk 
C+7=2E+ Z Z P e n ( x E n )  4mny 

n-o m-1 
(55) 

The complexity of these expressions precludes any immediate conclusions beyond 
noting the zero shear viscosity to be 

The corresponding value of for the Huggins coefficient, characterizing the pair 
interactions, coincides with the values for porous spheres in the free-draining limit 
(Felderhof 1976 ; Russel 1979) or the far-field contribution for solid spheres (Batchelor 
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1977). For spheres, however, only hydrodynamic interactions enter, whereas with 
rods the Brownian torques provide a significant fraction (75 %) of both the O(nP) and 
the pair-interaction terms. Consequently, as we shall see more clearly in the next 
section, the Huggins coefficient varies with Pe and type of flow, in contrast to the 
situation with spheres for which the far-field contribution remains Newtonian. 

6. Viscometric functions for simple shear and steady elongation 
These two flow fields illustrate somewhat better than the general equation (55) the 

consequences of pair interactions in a suspension of rods. The results for isolated rods 
are included for comparison. 

For simple shear with El, = Eal = Q,, = -Q,, = l / d 2 ,  the relative viscosity 

F = zin 
and the two normal stress differences 

Ni = zii-zaa, 
Na = z a a - z s ,  

fully describe the rheology. Here all quantities remain dimensionless as before, but 
the bulk stresses above include both the hydrodynamic and Brownian parts. 

From (55) one finds 
F =  l + [ q ] n + k [ q ] W +  ..., (57) 

with 

and 

e(1 -0.020Pea + . . .), 16n% 
171 = 45 

k = :( 1 -0.0142Pe2 + . . .) 

For each the interactions enhance the non-Newtonian effects predicted at infinite 
dilution. 

At O(n) alignment of the isolated rods by the shear flow decreases the shear stress 
and, hence, the effective hydrodynamic volume [q] .  The shear thinning at O(ne) 
reflects this as well, but also includes a slightly larger effect on k, due to further 
alignment of the rods by hydrodynamic interactions. Although both normal stresses 
increase in absolute magnitude, the ratio 

N* 7 45 
decreases. 

Without the deformation of the excluded volume, (57) and (58) would be 

k’ = :(l -0.009Pe8), 
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45 

3 = -I( 1 
N ;  7 

Consequently, the effect of alignment on the excluded volume significantly alters the 
rheology, enhancing the shear thinning of the viscosity and the second normal stress, 
but leaving the first normal stress unchanged. 

For axisymmetric extension with El, = -2E,, = -2E3, = 4 6 / 3  and Qu = 0 the 
- 
7, = tl/6[cii -a(zz, &)I Trouton viscosity 

= 3( 1 + [ r ~ ]  n -k k~[T,] 'n~ +. . .) 
characterizes the fluid response. From (52) 

16d3 
[?TI = 7 s( l  +&Pe+&Pe2+. . .), 

(59) 

k ,  = g ( 1  +0.0518Pe-0.0130Pe2+...).~ 

Here again increased alignment with the direction of the flow produces a larger stress. 
However, [VT] grows somewhat faster than k,. 

For a spherical excluded volume (60) becomes 

kk = $[l  +O.O893Pe-0.0044Pe2], 

indicating again that alignment decreases the interactions between the rods. 
These two examples illustrate the overall influence of interactions on the rheology 

of concentrated suspensions of rods. In both cases the O(n2) terms increase the 
non-Newtonian effects expected at infinite dilution. The predictions remain in 
qualitative accord with dilute theories but the O(n2) corrections portend important 
quantitative effects of interactions at higher concentrations. In  this sense this theory, 
valid for n13e < 1 ,  provides a bridge from the dilute ~ P E  < 1 to the semi-dilute 
n13 b 1 regimes. We will pursue this point further after juxtaposing the predictions 
with data for a semi-rigid macromolecule. 

7. Comparison with experimental results 
The literature contains little or no data on the concentration dependence of the 

viscometric functions for dilute suspensions of truly rigid rods without electroviscous 
effects. However, Xanthan gum, with molecular weights of x 106-107, at moderately 
high salt concentrations ( xO.1 M NaCl) apparently behave somewhat like a rigid, 
uncharged rod. Although the macromolecule carries some fixed charges and retains 
some flexibility (Holzwarth 1978), Whitcomb & Macosko (1978) successfully fit their 
shear-thinning intrinsic-viscosity data via the rigid-rod theory. Here we use the more 
complete data of Chauveteau (1982) which reveals the shear-rate dependence of both 
the intrinsic viscosity and the Huggins coefficient. 

When expressed in terms of the weight concentration, the theory contains three 
parameters: a, 1 and M (the molecular weight). The data for the intrinsic viscosity 
readily yield a value for the low-shear limit [7], and, from the shear-thinning 
behaviour, the rotary diffusion coefficient Do. From the theory 
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Batch [Vlo DO M 21 m 

A 4.3 ma/kg 133 s--I 587 kg/mole 0.58 pm 1.01 kg/nm-mole 
B 3.9 109 700 0.62 1.27 

TABLE 1 .  Values extracted from the data and results of Chauveteau (1982) 

k 
limk 
Pe+O 

- 

hl rn 
Pe+O 

10-1 1 
Pe 

10 

FIGURE 2. Data from Chauveteau (1982) for dilute solutions of Xanthan gum in 0, l  M NsCI: 

batch [TI k 
A data + 0 

B data 0 0 

Theory: -, numerical results for [7] (Scheraga 1955); --- , O(Pe2) expansion for [v] (Hinoh 
& Leal 1972); ---- , O(Pe8) expansion for k (equation 55). 

limPe+O 4.3 ms/kg 0.454 

lim Pe+O 3.9 m3/kg 0.455 

where N A  = Avogadro’s number. For a single-stranded Xanthan gum a ZG 1.0 nm 
(Holzwarth t Prestridge 1978). Finally the length follows from the measured [qI0 and 
the theoretical result 

Table 1 summarizes the values extrbted from the data for [qlO and Do and the results 
for M, 1 and m = M/21. The last fall close to that deduced for a single strand from 
the molecular structure of Xanthan, 0.93 kg/nm-mole, but the first lie well below the 
molecular weights from light scattering reported by Chauvetsau (1Q82). 

Figure 2 shows our fit of the O(n) theory to Chauveteau’s (1982) measurements for 
two slightly different molecular weights at 0.1 M NaCl. The shear-rate dependence 
of [q] conforms to the predictions from the numerical solutions of Scheraga (1955) 
(see Brenner 1974) over the entire range of shear rates, lending some credibility to 
the rigid-rod model despite the discrepancy in molecular weights. 

Figure 2 also compares our O(Pe2) theory for k with the measured values. The 
low-shear limit (0.45) exceeds slightly the predicted value (0.40). The shear-rate 
dependence, however, significantly exceeds that predicted for Pe < 1. These discre- 
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pancies may reflect the two approximations in the theory, the far-field form for the 
interactions and the representation of the excluded volume by an equivalent ellipsoid, 
or merely that these Xanthan gum suspensions are not a good model system for 
rigid-rod interactions. 

8. Relationship to semi-dilute theories 
At concentrations beyond the dilute regime near-field hydrodynamic interactions 

among many rods become important. Two approximate approaches propose reason- 
able alternatives to the intractable many-body problems that an exact theory would 
have to confront. Both apply to the semi-dilute regime for which 1 4 kn 4 ( l / c ~ ) ~ .  

The first, due to Batchelor (1971), pertains to extensional flow, which aligns all rods 
in the direction of extension in the Pe+m limit. With slender-body theory and the 
idea that neighbouring rods, in effect, form a cell of radius r = (27th-f about the test 
rod, he derived the extensional viscosity as 

The logarithmic dependence on r obviates the uncertainty in defining the cell. As 
noted later (Batchelor 1976), the results of this theory, which remain valid for jjT B 3, 
agree quite satisfactorily with experimental data. Since extension of our theory to 
Pe 9 1 remains to be done, we cannot comment on the transition from dilute to 
semi-dilute behaviour in this case. 

The recent theory of Doi & Edwards (1978a,b) addresses conditions more 
compatible with our work. They propose a means for correcting the rotary diffusion 
coefficient of a particular rod for the effects of interactions with many neighbours 
at  semi-dilute concentrations. The authors ignore weak far-field interactions, but 
consider the ‘constraints’ that prevent rods from passing through one another while 
rotating or translating perpendicular to their axes. Either lubrication stresses, 
associated with near-field hydrodynamic interactions between rods having diameters 
large relative to the solvent molecules, or repulsive interaction potentials between 
the rods themselves would provide the necessary forces. From geometrical arguments 
they deduce the effective rotary diffusion coefficient to be 

at equilibrium, with an additional correction due to alignment at higher shear rates. 
/3 is an unknown constant assumed to be O( 1) .  

The calculations of the orientation distribution function and the particle stress then 
proceed much as in the dilute limit, although some ambiguity remains concerning 
the appropriate diffusivity to be used in the latter (Jain & Cohen 1981). For Pe 4 1 
Doi & Edwards (1978b) obtained 

’ 

Figures 3 and 4 compare the predictions of the two theories. 
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FIQURE 3. Low-bhear limiting viscosity from pair-interaction theory (-) and semidllute theory 
of Doi & Edwards (197% b )  (----) with data from Chauveteau (1982) for XwthrpEl gum (0). 

For suspensions of spheres of radius a, O ( U % ) ~  theoriearemain reasonably accurate 
up to ,Z x 1.4-2.0. Indeed figure 3 shows that Cbuve@au's (1982) data for Xwtban 
gum in the low-shear limit follows (56) fcq I, G 4. Above ji x 30 the results sonform 
to the semi-dilute theory if fie2 x 210. This means /3 x 8.6 x lo3, contrary to the 
original assumption of DSi & Edwards (1978~)  that /3 = O(1) but consistent with 
dynamic light-scatteriag measurements (Pecora 1985). 

Figure 4 shaws the corresponding results for the first normal-stress difference. The 
ratios of the two normal stresses indicate a minor inconsistency between the two 
theories, From the semi-dilute theory - N , / N ,  = 2/7, independent of concentration, 
while the dilute theory predicts this ratio to decrease from 1/7 with increasing 
concentration. 

This comparison of the dilute and semi-dilute theories with viscosities measured 
for Xanthan gum solutions suggests that at near zero shear rates the dilute regime 
extends to [q],c % 1.5-1.75 while the semi-dilute regime begins about [rj],c NN 5-6. 
Some questions remain about the application of both theories since the molecular 
weight deduced from the former seems low and the value of /3 required to fit the latter 
seems high. 



492 D. H .  Berry and W .  B. Russel 

I 
I 
I 

I 
I 
I 
I 

lo* r I 
I 
I 

10 102 
#% €nP 

FIGURE 4. First normal-stress difference from pair-intermtion theory (-) and semi-dilute 
theory of Doi & Edwards (1978a, b )  with fie3 = 210 (---- 1. 

9. Summary 
In this paper we have calculated the effects of far-field hydrodynamic interactions 

between rods on the orientational distribution and bulk stress for a general steady 
shear flow. The solutions, obtained to O(Pe3) as regular perturbation expansions, 
indicate that interactions increase the alignment of the rods with the flow and, 
thereby, enhance the shear thinning and strain thickening expected from dilute 
theories. In the Newtonian low-shear limit the Huggins' coefficient assumes the value 
of 0.40 found previously for free-draining coils. 

The theoretical predictions for the Huggins coefficient agree qualitatively with 
data for Xanthan gum (Chauveteau 1982), a semi-rigid biopolymer. Quantitatively, 
the low-shear limit errs by only about 10 %, but the shear-rate dependence predicted 
for the Huggins coefficient is significantly less than observed. 

The concentration dependence arising from pair interactions is, of course, much 
weaker than that resulting from semi-dilute theories. A brief comparison emphasizes 
further the fundamentally different nature of the interactions between the two and 
indicates the transition at near zero shear rates to occur for 1.5 < [7,1],; G 6. 

This work was partially supported by the National Science Foundation through 
Grant CPE-7825929. The authors thank E. J. Hinch for key suggestions at sevefal 
points along the way. 
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FIGURE 5. Polar angles relative to alignment direction for single rod in simple shear flow. 

Appendix. Basis vectors for calculation of (0 
In  order to calculate the average moment of inertia (0 in (34), the orientation 

vector q2 is expressed in a spherical coordinate system (see figure 5 )  containing q1 
as 

q2 = sin a cos /38 + sin a sin p+ + COB aq,. (A 1) 

The orientation vector q1 written in spherical coordinates with respect to a space-fixed 
coordinate system as 

(A 2) q1 = sin 6' cos $il + sin B sin $iz + cos ei, 

(A 3) 1 defines 8 = cos B cos $il + cos 8 sin $ia -sin di,, 

+=-  sin $il + cos $i2, 

q1 = sin B cos $il + sin B sin $iz + cos ei,. 
The vector identities 

q l x q z  = sinacos/3+-sinasin/38 

and 0, 0, + $, $, = -q, q, (index notation), 

along with orthogonality relationships are then used in calculating (0. 
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